M U S T A M Ä E   B R I D Ž I K L U B I B O A R D   N R .   1 B O A R D   N R .   2 B O A R D   N R .   3
P A A R I T U R N I I R   -   1 3 . 0 5 . 2 0 1 5 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   1 3 . 0 5 . 2 0 1 5   1 6 : 3 6 : 4 4 2,0 1   3 W =   140 2 6,0 6,0 1   4 E =   420 2 2,0 1,0 1 400 3Nt S =     2 7,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 0,0 8   4 W +1   450 3 8,0 6,0 8   4 W =   420 3 2,0 4,0 8 430 3Nt S +1     3 4,0
1 62,50% 7 Laugen, Ülo Ruubel, Taavi 6,0 6 50 4 W -1     9 2,0 1,0 6   4 E +1   450 9 7,0 7,0 6 460 3Nt S +2     9 1,0
2 58,33% 8 Keridan, Tõnis Tammesalu, Vahur 6,0 10 50 4 W -1     4 2,0 1,0 10   4 W +1   450 4 7,0 7,0 10 460 3Nt S +2     4 1,0
3 57,41% 10 Keil, Vello Ivarinen, Tahvana 6,0 7 50 4 W -1     5 2,0 6,0 7   4 W =   420 5 2,0 1,0 7 400 3Nt S =     5 7,0
4 54,17% 4 Teras, Jüri Vassiljev, Aleksander B O A R D   N R .   4 B O A R D   N R .   5 B O A R D   N R .   6
5= 51,39% 1 Mänd, Heiki Aavekukk, Agu P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5= 51,39% 6 Virkus, Ants Laanemets, Ivo 3,0 1   3Nt W +1   630 9 5,0 4,0 1 110 1♠ N +1     9 4,0 5,0 1 420 4 S =     9 3,0
7 47,22% 3 Hallika, Toivo Kangur, Konstantin 0,0 3   4 W +1   650 4 8,0 0,0 3   3♠ N -1   100 4 8,0 5,0 3 420 4 N =     4 3,0
8 44,44% 9 Pärn, Mall Uuring, Siiri 6,0 10   4 W =   620 7 2,0 4,0 10 110 2♠ N =     7 4,0 5,0 10 420 4 S =     7 3,0
9 43,06% 5 Kaare, Mare Koppel, Marju 8,0 5 100 4 W -1     2 0,0 8,0 5 140 2♠ N +1     2 0,0 0,0 5 170 3 S +1     2 8,0
10 30,09% 2 Helmvee, Fatima Kukkela, Eve 3,0 6   3Nt E +1   630 8 5,0 4,0 6 110 2♠ N =     8 4,0 5,0 6 420 4 S =     8 3,0
B O A R D   N R .   7 B O A R D   N R .   8 B O A R D   N R .   9
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
2,0 1   4 W =   620 7 6,0 1,0 1   2♠ W =   110 7 7,0 5,0 1 120 2Nt S =     7 3,0
6,0 4   3 E +1   130 2 2,0 6,0 4 180 1Nt N +3     2 2,0 8,0 4 150 2Nt N +1     2 0,0
0,0 5   4 E +1   650 6 8,0 1,0 5   2♠ W =   110 6 7,0 5,0 5 120 1Nt S +1     6 3,0
8,0 8   3♠ S -1   100 9 0,0 4,0 8 50 3♠ W -1     9 4,0 0,0 8   2Nt N -1   50 9 8,0
4,0 10   4♠ S -3   300 3 4,0 8,0 10 300 1Ntx E -2     3 0,0 2,0 10 110 2♠ S =     3 6,0
B O A R D   N R .   1 0 B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 1 120 1Nt N +1     6 4,0 6,0 1   2 W +3   150 6 2,0 6,0 1   4♠ W =   420 6 2,0
2,0 2 110 2♣ N +1     9 6,0 4,0 2   5 W =   400 9 4,0 3,0 2   4♠ W +1   450 9 5,0
8,0 8 300 2 W -3     10 0,0 8,0 8   3 N -2   100 10 0,0 8,0 8   3♠ W +2   200 10 0,0
0,0 3   3Nt S -2   200 7 8,0 0,0 3   3Nt E +3   490 7 8,0 3,0 3   4♠ W +1   450 7 5,0
6,0 5 150 1Nt N +2     4 2,0 2,0 5   3Nt W +1   430 4 6,0 0,0 5   3Nt E +3   490 4 8,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4 B O A R D   N R .   1 5
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   3Nt S -1   100 10 8,0 1,0 1   4♠ S -1   50 10 7,0 2,0 1 150 3 N +2     10 6,0
4,0 9 600 3Nt N =     7 4,0 1,0 9   4♠ S -1   50 7 7,0 2,0 9 150 4 S +1     7 6,0
2,0 3 130 3 N +1     5 6,0 6,0 3 140 3♠ S =     5 2,0 7,0 3 630 3Nt S +1     5 1,0
6,0 4 660 3Nt S +2     6 2,0 4,0 4 50 4♣ E -1     6 4,0 7,0 4 630 3Nt S +1     6 1,0
8,0 8 800 3♠x W -3     2 0,0 8,0 8 150 4 W -3     2 0,0 2,0 8 150 3 S +2     2 6,0
B O A R D   N R .   1 6 B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
7,0 1 100 4 W -1     5 1,0 8,0 1 170 2♠ N +2     5 0,0 1,0 1   3Nt W +2   460 5 7,0
4,0 7   2Nt N -1   50 6 4,0 5,0 7 140 3♠ N =     6 3,0 4,0 7   3Nt W +1   430 6 4,0
1,0 4   2♠ E +1   140 8 7,0 2,0 4   3♣ S -2   100 8 6,0 6,0 4 50 4 E -1     8 2,0
7,0 2 100 4♠ E -1     10 1,0 0,0 2   3♠ N -3   150 10 8,0 1,0 2   3Nt W +2   460 10 7,0
1,0 3   3♠ E =   140 9 7,0 5,0 3 140 3♠ N =     9 3,0 8,0 3 500 4x E -3     9 0,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0 B O A R D   N R .   2 1
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
3,0 1   3 E =   140 8 5,0 6,0 1   2 E +3   200 8 2,0 2,0 1 50 3 E -1     8 6,0
3,0 6   3 E =   140 10 5,0 6,0 6   2 E +3   200 10 2,0 7,0 6 110 3♣ S =     10 1,0
8,0 2   3♣ S -1   50 3 0,0 1,0 2   4 E +1   650 3 7,0 0,0 2   4 E =   420 3 8,0
6,0 9   3♣ S -2   100 5 2,0 1,0 9   4 E +1   650 5 7,0 7,0 9 110 3♣ S =     5 1,0
0,0 4   3 E +1   170 7 8,0 6,0 4   3 E +2   200 7 2,0 4,0 4 100 3 E -2     7 4,0
B O A R D   N R .   2 2 B O A R D   N R .   2 3 B O A R D   N R .   2 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 1 100 2Nt W -1     3 4,0 7,0 1 680 4 S +2     3 1,0 7,0 1   4 W =   420 3 1,0
4,0 10 100 2Nt W -1     5 4,0 3,0 10 650 4 S +1     5 5,0 7,0 10   4 W =   420 5 1,0
4,0 9 100 3Nt E -1     4 4,0 7,0 9 680 4 S +2     4 1,0 3,0 9   4 W +1   450 4 5,0
8,0 7 200 3Nt W -2     8 0,0 0,0 7   6 S -1   100 8 8,0 3,0 7   4 W +1   450 8 5,0
0,0 2   2 E =   90 6 8,0 3,0 2 650 4 S +1     6 5,0 0,0 2   4 W +2   480 6 8,0
B O A R D   N R .   2 5 B O A R D   N R .   2 6 B O A R D   N R .   2 7
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5,0 1   5 E =   650 4 3,0 8,0 1 200 2 W -2     4 0,0 5,0 1 100 3Nt W -2     4 3,0
5,0 5   5 E =   650 8 3,0 5,0 5 100 3♣ E -1     8 3,0 5,0 5 100 4 E -2     8 3,0
8,0 7 200 6Ntx W -1     2 0,0 5,0 7 100 2 W -1     2 3,0 8,0 7 150 4 E -3     2 0,0
1,0 6   4 E +2   680 3 7,0 2,0 6   3♣ E =   110 3 6,0 1,0 6 50 3Nt W -1     3 7,0
1,0 9   4 E +2   680 10 7,0 0,0 9   4♠ S -3   300 10 8,0 1,0 9 50 3Nt E -1     10 7,0