M U S T A M Ä E   B R I D Ž I K L U B I B O A R D   N R .   1 B O A R D   N R .   2
P A A R I T U R N I I R   -   2 0 . 0 5 . 2 0 1 5 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   2 0 . 0 5 . 2 0 1 5   1 6 : 1 8 : 3 5 5,0 1 100 2 E -2     2 5,0 0,0 1 170 2♠ S +2     2 10,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 0,0 11   3♠ N -3   150 6 10,0 5,0 11 600 3Nt N =     6 5,0
1 61,36% 1 Mänd, Heiki Aavekukk, Agu 8,0 9 140 2♠ N +1     8 2,0 5,0 9 600 3Nt N =     8 5,0
2 60,91% 3 Heinlo, Liidia Heinlo, Aavo 5,0 3 100 2 E -2     12 5,0 2,0 3 300 3x W -2     12 8,0
3 58,18% 4 Teras, Jüri Vassiljev, Aleksander 2,0 7   2♠ N -2   100 4 8,0 9,0 7 630 3Nt N +1     4 1,0
4 53,64% 8 Hibus, Peeter Järve, Jaan 10,0 5 150 2 E -3     10 0,0 9,0 5 630 3Nt N +1     10 1,0
5 52,73% 5 Kuivallik, Tõnu Uuring, Siiri B O A R D   N R .   3 B O A R D   N R .   4
6 49,09% 9 Laugen, Ülo Ruubel, Taavi P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
7 47,73% 6 Aava. Jaak Raamat, Albert 10,0 1 200 4♣ W -2     7 0,0 5,0 1   6♠ W +1   1460 7 5,0
8 46,82% 7 Keridan, Tõnis Tammesalu, Vahur 0,0 5   2Nt E =   120 9 10,0 5,0 5   6♠ W +1   1460 9 5,0
9 44,55% 2 Kaare, Mare Koppel, Marju 3,0 4   3♣ W =   110 11 7,0 5,0 4   6♠ W +1   1460 11 5,0
10 43,18% 10 Keil, Vello Ivarinen, Tahvana 3,0 12   3♣ W =   110 10 7,0 5,0 12   6♠ W +1   1460 10 5,0
11 42,27% 11 Hiibus, Reet Suurväli, Albert 7,0 8   2♠ S -1   50 2 3,0 5,0 8   6♠ W +1   1460 2 5,0
12 39,55% 12 Hallika, Toivo Kangur, Konstantin 7,0 3   3♠ N -1   50 6 3,0 5,0 3   6♠ W +1   1460 6 5,0
B O A R D   N R .   5 B O A R D   N R .   6
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   5♣x S -5   1400 8 10,0 6,0 1 1010 6♠ N +1     8 4,0
6,0 3   5 S -4   400 4 4,0 10,0 3 1440 7♣ N =     4 0,0
3,0 2   4♠ W =   420 5 7,0 0,0 2 510 4♠ N +3     5 10,0
9,0 10   4 S -1   100 6 1,0 6,0 10 1010 6♠ N +1     6 4,0
9,0 11   4 S -1   100 7 1,0 6,0 11 1010 6♠ N +1     7 4,0
3,0 12   4♠ E =   420 9 7,0 2,0 12 940 6♣ S +1     9 8,0
B O A R D   N R .   7 B O A R D   N R .   8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
9,0 1   3Nt W =   600 11 1,0 10,0 1 480 4♠ N +2     11 0,0
5,0 12   3Nt E +1   630 2 5,0 3,0 12 200 3♠ S +2     2 7,0
0,0 7   2x S -5   1400 3 10,0 7,0 7 450 5♠ N =     3 3,0
9,0 6   3Nt E =   600 9 1,0 3,0 6 200 3♠ S +2     9 7,0
5,0 5   3Nt W +1   630 8 5,0 7,0 5 450 4♠ N +1     8 3,0
2,0 10   3Nt W +2   660 4 8,0 0,0 10   3♣ W =   110 4 10,0
B O A R D   N R .   9 B O A R D   N R .   1 0
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
7,0 1 130 3 S +1     5 3,0 10,0 1 120 2Nt N =     5 0,0
10,0 10 300 3♣ W -3     7 0,0 0,0 10   4x S -2   500 7 10,0
4,0 8 120 2Nt S =     12 6,0 3,0 8 100 2♣ W -1     12 7,0
2,0 9 110 2♠ S =     4 8,0 3,0 9 100 2♠ W -1     4 7,0
7,0 3 130 3 S +1     11 3,0 7,0 3 110 2 S =     11 3,0
0,0 6   2♠ S -1   50 2 10,0 7,0 6 110 1 S +1     2 3,0
B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   4♠ E +1   450 3 10,0 6,0 1   3Nt E =   400 3 4,0
4,0 6   3 E +1   130 8 6,0 1,0 6   3Nt E +2   460 8 9,0
6,0 11   4 N -2   100 10 4,0 8,0 11   2Nt W +2   180 10 2,0
8,0 4 170 2 N +2     2 2,0 10,0 4 50 2Nt E -1     2 0,0
2,0 12   3♠ E +1   170 5 8,0 4,0 12   3Nt E +1   430 5 6,0
10,0 9 450 4 S +1     7 0,0 1,0 9   3Nt E +2   460 7 9,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
8,0 1   5 E +1   620 12 2,0 9,0 1 420 4 S =     12 1,0
8,0 9   5 W +1   620 11 2,0 0,0 9   5x S -1   100 11 10,0
3,0 5   3Nt E +2   660 6 7,0 2,0 5   4 S -1   50 6 8,0
0,0 2   3Nt E +4   720 7 10,0 6,0 2 100 3Nt E -2     7 4,0
8,0 10   5 E +1   620 3 2,0 4,0 10 50 3♠ E -1     3 6,0
3,0 4   3Nt W +2   660 8 7,0 9,0 4 420 4 N =     8 1,0
B O A R D   N R .   1 5 B O A R D   N R .   1 6
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
10,0 1 630 3Nt S +1     10 0,0 7,0 1 100 4 E -1     10 3,0
0,0 4   3Nt S -1   100 5 10,0 2,0 4   3♠ N -1   50 5 8,0
2,0 3 100 2♠ E -2     9 8,0 7,0 3 100 4 E -1     9 3,0
4,0 7 120 2Nt N =     8 6,0 0,0 7   5♣ N -2   100 8 10,0
7,0 6 600 3Nt S =     12 3,0 7,0 6 100 4 W -1     12 3,0
7,0 2 600 3Nt S =     11 3,0 7,0 2 100 4 E -1     11 3,0
B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
7,0 1   3 W +2   200 6 3,0 2,0 1   4♠ S -2   200 6 8,0
1,0 2   4 W =   420 3 9,0 8,0 2   3♠ S -1   100 3 2,0
1,0 12   4 W =   420 4 9,0 2,0 12   3♠ S -2   200 4 8,0
7,0 8   3 W +2   200 11 3,0 8,0 8   3♠ S -1   100 11 2,0
4,0 9   4♠x N -2   300 10 6,0 2,0 9   4♠ S -2   200 10 8,0
10,0 7 50 5 W -1     5 0,0 8,0 7   3♠ S -1   100 5 2,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
8,0 1 140 2♠ S +1     9 2,0 6,0 1 100 1 W -1     9 4,0
0,0 7   4♠x S -4   800 12 10,0 8,0 7 120 2Nt N =     12 2,0
10,0 10 170 3♠ S +1     2 0,0 4,0 10 90 2♣ S =     2 6,0
5,0 11   3♠ S -1   50 5 5,0 2,0 11   1 W =   80 5 8,0
5,0 4   2♠ S -1   50 6 5,0 10,0 4 180 1Nt S +3     6 0,0
2,0 8   3♠x S -3   500 3 8,0 0,0 8   1♠ N -1   100 3 10,0
B O A R D   N R .   2 1 B O A R D   N R .   2 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
8,0 1 150 3♠ W -3     4 2,0 2,0 1   6Nt S -1   50 4 8,0
6,0 8 130 3♣ N +1     10 4,0 8,0 8 990 6Nt S =     10 2,0
4,0 6 110 3♣ S =     7 6,0 4,0 6 460 3Nt S +2     7 6,0
0,0 5   3Ntx N -2   500 3 10,0 8,0 5 990 6Nt S =     3 2,0
2,0 2 100 3♠ W -2     9 8,0 8,0 2 990 6Nt S =     9 2,0
10,0 11 800 4♠x W -4     12 0,0 0,0 11   6Nt N -3   150 12 10,0