M U S T A M Ä E   B R I D Ž I K L U B I B O A R D   N R .   1 B O A R D   N R .   2
P A A R I T U R N I I R   -   0 3 . 0 6 . 2 0 1 5 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   0 4 . 0 6 . 2 0 1 5   1 3 : 0 1 : 3 4 7,0 1 430 3Nt N +1     2 3,0 7,0 1   3Nt W =   400 2 3,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 0,0 11   5Nt S -1   50 6 10,0 1,0 11   3Nt W +2   460 6 9,0
1 64,18% 2 Keridan, Tõnis Tammesalu, Vahur 3,0 9 400 3Nt S =     8 7,0 1,0 9   3Nt W +2   460 8 9,0
2 61,73% 7 Laugen, Ülo Ruubel, Taavi 7,0 3 430 3Nt S +1     12 3,0 4,0 3   3Nt W +1   430 12 6,0
3= 58,27% 3 Aavekukk, Agu Suurväli, Albert 10,0 7 490 3Nt S +3     4 0,0 10,0 7   3♣ W =   110 4 0,0
3= 58,27% 12 Hibus, Peeter Hibus, Heldur 3,0 5 400 3Nt S =     10 7,0 7,0 5   3Nt W =   400 10 3,0
5 54,45% 8 Kolk, Marek Puiestik, Peep B O A R D   N R .   3 B O A R D   N R .   4
6 49,55% 5 Parker, Valev Jürman, Ants P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
7 48,55% 10 Teras, Jüri Vassiljev, Aleksander 5,0 1   5x N -3   500 7 5,0 0,2 1   3Nt N -3   300 7 9,8
8 46,91% 1 Mänd, Heiki Tulp, Ants 4,0 5 40%         60% 9 6,0 4,0 5 40%         60% 9 6,0
9 46,55% 11 Lüütre, Enn Lepasaar, Leenart 2,6 4   4♠ E =   620 11 7,4 5,0 4   3 S -1   100 11 5,0
10 42,09% 4 Virkus, Ants Laanemets, Ivo 9,8 12 800 4♠x E -3     10 0,2 7,4 12 100 2♠ W -1     10 2,6
11 39,00% 6 Heinlo, Liidia Heinlo, Aavo 0,2 8   5♣x S -4   800 2 9,8 2,6 8   4 S -2   200 2 7,4
12 30,45% 9 Kuivallik, Tõnu Uuring, Siiri 7,4 3   4 N -2   100 6 2,6 9,8 3 110 2 S =     6 0,2
B O A R D   N R .   5 B O A R D   N R .   6
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   1♣ N -2   200 8 10,0 6,0 1 400 3Nt S =     8 4,0
8,0 3 100 2♠ E -2     4 2,0 3,0 3   6Nt N -1   50 4 7,0
4,0 2 50 3♣ W -1     5 6,0 8,0 2 420 4♠ N =     5 2,0
10,0 10 130 2 N +2     6 0,0 0,0 10   3Nt S -2   100 6 10,0
2,0 11   2Nt W =   120 7 8,0 3,0 11   3Nt S -1   50 7 7,0
6,0 12 90 2 S =     9 4,0 10,0 12 430 3Nt N +1     9 0,0
B O A R D   N R .   7 B O A R D   N R .   8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 1   2 W =   90 11 6,0 9,0 1 140 2♠ N +1     11 1,0
2,0 12   2 N -1   100 2 8,0 9,0 12 140 3♠ N =     2 1,0
8,0 7 110 2 S =     3 2,0 5,0 7   4♠ N -1   50 3 5,0
8,0 6 110 2 N =     9 2,0 5,0 6   4♠ N -1   50 9 5,0
0,0 5   2 W +1   110 8 10,0 1,0 5   4♠ N -2   100 8 9,0
8,0 10 110 2 S =     4 2,0 1,0 10   4♠ N -2   100 4 9,0
B O A R D   N R .   9 B O A R D   N R .   1 0
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
3,0 1 430 3Nt N +1     5 7,0 6,0 1   1 E =   80 5 4,0
8,0 10 460 3Nt N +2     7 2,0 8,0 10 100 2 E -1     7 2,0
8,0 8 460 3Nt N +2     12 2,0 10,0 8 110 2♠ S =     12 0,0
0,0 9 400 3Nt S =     4 10,0 4,0 9   2 E =   110 4 6,0
8,0 3 460 3Nt N +2     11 2,0 1,0 3   2 E +1   140 11 9,0
3,0 6 430 3Nt N +1     2 7,0 1,0 6   2 E +1   140 2 9,0
B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5,0 1   3 E +1   170 3 5,0 4,0 1 50 1Nt W -1     3 6,0
0,0 6   4 W =   420 8 10,0 9,0 6 620 4♠ S =     8 1,0
9,0 11 50 4 W -1     10 1,0 9,0 11 620 4♠ N =     10 1,0
5,0 4   3 E +1   170 2 5,0 2,0 4   2 E =   90 2 8,0
2,0 12   4♠ S -4   200 5 8,0 6,0 12 500 5♣x E -3     5 4,0
9,0 9 50 4 E -1     7 1,0 0,0 9   4♠x S -1   200 7 10,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   4♠ W +1   650 12 10,0 0,0 1 300 4♠x E -2     12 10,0
4,0 9   4♠ W =   620 11 6,0 6,0 9 450 4 S +1     11 4,0
10,0 5   1Nt E =   90 6 0,0 6,0 5 450 4 S +1     6 4,0
4,0 2   4♠ E =   620 7 6,0 6,0 2 450 4 S +1     7 4,0
8,0 10   3♠ E +1   170 3 2,0 6,0 10 450 4 S +1     3 4,0
4,0 4   4♠ E =   620 8 6,0 6,0 4 450 5 S =     8 4,0
B O A R D   N R .   1 5 B O A R D   N R .   1 6
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   3Nt S -2   200 10 10,0 4,0 1 100 1 E -1     10 6,0
2,0 4 100 2 W -2     5 8,0 0,0 4 80 1 S =     5 10,0
7,0 3 130 2 N +2     9 3,0 10,0 3 200 2♠ E -2     9 0,0
7,0 7 130 2 N +2     8 3,0 4,0 7 100 2♣ W -1     8 6,0
4,0 6 120 2Nt N =     12 6,0 4,0 6 100 2Nt E -1     12 6,0
10,0 2 500 3♣x E -3     11 0,0 8,0 2 120 1Nt N +1     11 2,0
B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
7,0 1 430 3Nt N +1     6 3,0 8,0 1   4♠ E +1   450 6 2,0
7,0 2 430 3Nt N +1     3 3,0 2,0 2   3Nt W +3   490 3 8,0
7,0 12 430 3Nt N +1     4 3,0 5,0 12   4♠ E +2   480 4 5,0
7,0 8 430 3Nt N +1     11 3,0 0,0 8   6Nt W =   990 11 10,0
1,0 9 400 3Nt S =     10 9,0 5,0 9   4♠ E +2   480 10 5,0
1,0 7 400 3Nt N =     5 9,0 10,0 7 100 6♠ E -2     5 0,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
8,0 1 200 3Nt W -2     9 2,0 9,0 1 110 2 N =     9 1,0
8,0 7 200 2 E -2     12 2,0 2,0 7   4 N -2   200 12 8,0
2,0 10   4 E =   620 2 8,0 2,0 10   4 N -2   200 2 8,0
8,0 11 200 2 E -2     5 2,0 6,0 11   3 N -1   100 5 4,0
4,0 4   3♠ W +1   170 6 6,0 9,0 4 110 2 N =     6 1,0
0,0 8   3♠x E =   730 3 10,0 2,0 8   4 N -2   200 3 8,0
B O A R D   N R .   2 1 B O A R D   N R .   2 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
3,0 1 720 3Nt N +4     4 7,0 8,0 1 100 3 W -1     4 2,0
3,0 8 720 3Nt N +4     10 7,0 8,0 8 100 4 W -1     10 2,0
0,0 6   7♠ S -3   300 7 10,0 4,0 6   4♠ S -2   100 7 6,0
10,0 5 2220 7Nt N =     3 0,0 0,0 5   4♠ S -3   150 3 10,0
7,0 2 1390 6 S +1     9 3,0 8,0 2 100 3 W -1     9 2,0
7,0 11 1390 6 N +1     12 3,0 2,0 11   2 W =   110 12 8,0