M U S T A M Ä E   B R I D Ž I K L U B I B O A R D   N R .   1 B O A R D   N R .   2 B O A R D   N R .   3
P A A R I T U R N I I R   -   1 6 . 0 7 . 2 0 1 5 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   1 6 . 0 7 . 2 0 1 5   1 5 : 0 0 : 1 3 4,0 1 420 4 N =     2 2,0 3,0 1 50 2♠ W -1     2 3,0 6,0 1   4 E +1   650 2 0,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 4,0 8 420 4 N =     3 2,0 3,0 8 50 2♠ W -1     3 3,0 1,0 8   5♣x S -4   800 3 5,0
1 58,33% 7 Lüütre, Enn Ivarinen, Tahvana 4,0 6 420 4 S =     9 2,0 0,0 6   2♠ W =   110 9 6,0 4,0 6   4 E +2   680 9 2,0
2= 56,25% 8 Keridan, Tõnis Tammesalu, Vahur 0,0 7   4 S -1   50 5 6,0 6,0 7 140 2 N +1     5 0,0 1,0 7   5♣x S -4   800 5 5,0
2= 56,25% 9 Teras, Jüri Vassiljev, Aleksander B O A R D   N R .   4 B O A R D   N R .   5 B O A R D   N R .   6
4 50,69% 4 Kuivallik, Tõnu Ruubel, Silvi P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5 48,61% 5 Laugen, Ülo Ruubel, Taavi 5,0 1 200 3Nt E -2     9 1,0 1,0 1   3Nt E +1   430 9 5,0 3,0 1 100 3Nt W -1     9 3,0
6= 47,92% 6 Virkus, Ants Laanemets, Ivo 0,0 3   3Nt W =   600 4 6,0 4,0 3   5 E =   400 4 2,0 6,0 3 200 3Nt W -2     4 0,0
6= 47,92% 3 Hallika, Toivo Kangur, Konstantin 2,0 5   3♣ W =   110 2 4,0 6,0 5   2♣ W +3   150 2 0,0 0,0 5   3Nt W =   600 2 6,0
8 47,22% 1 Aavekukk, Agu Suurväli, Albert 5,0 6 200 3Nt E -2     8 1,0 1,0 6   3Nt E +1   430 8 5,0 3,0 6 100 3Nt W -1     8 3,0
9 36,81% 2 Pärn, Mall Uuring, Siiri B O A R D   N R .   7 B O A R D   N R .   8 B O A R D   N R .   9
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   3 S -2   200 7 6,0 0,0 1   6Nt S -1   50 7 6,0 1,0 1   4 E =   620 7 5,0
4,0 4   4 W =   130 2 2,0 4,0 4 980 6♠ N =     2 2,0 4,0 4   3 E +1   170 2 2,0
4,0 5   3♣ E +1   130 6 2,0 4,0 5 980 6♠ N =     6 2,0 1,0 5   4 E =   620 6 5,0
4,0 8   3 W +1   130 9 2,0 4,0 8 980 6♠ N =     9 2,0 6,0 8 100 4 E -1     9 0,0
B O A R D   N R .   1 0 B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6,0 1   2♣ W +3   150 6 0,0 5,0 1 110 2♠ S =     6 1,0 4,0 1 660 3Nt S +2     6 2,0
2,0 2   3Nt W +2   660 9 4,0 0,0 2   3x N -2   300 9 6,0 0,0 2   3Nt S -2   200 9 6,0
0,0 3   3Nt W +3   690 7 6,0 5,0 3 110 2♠ S =     7 1,0 4,0 3 660 3Nt S +2     7 2,0
4,0 5   5♣ W +1   620 4 2,0 2,0 5   3♣ W =   110 4 4,0 4,0 5 660 3Nt S +2     4 2,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4 B O A R D   N R .   1 5
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6,0 9 1700 2♠x E -6     7 0,0 5,0 9   4♠ E +1   450 7 1,0 4,0 9 150 2Nt S +1     7 2,0
0,0 3 720 3Nt N +4     5 6,0 1,0 3   4♠ E +2   480 5 5,0 6,0 3 250 3 W -5     5 0,0
2,0 4 1390 6♣ S +1     6 4,0 1,0 4   4♠ E +2   480 6 5,0 0,0 4 100 1♠ E -2     6 6,0
4,0 8 1440 6Nt N =     2 2,0 5,0 8   4♠ E +1   450 2 1,0 2,0 8 140 2 S +1     2 4,0
B O A R D   N R .   1 6 B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
3,0 1   4♠ S -1   50 5 3,0 3,0 1 430 3Nt S +1     5 3,0 2,0 1   4 W =   420 5 4,0
3,0 7   4♠ S -1   50 6 3,0 3,0 7 430 3Nt S +1     6 3,0 4,0 7   3Nt E =   400 6 2,0
0,0 4   3 W =   110 8 6,0 3,0 4 430 3Nt S +1     8 3,0 6,0 4 50 3Nt W -1     8 0,0
6,0 3 170 3♠ S +1     9 0,0 3,0 3 430 3Nt S +1     9 3,0 0,0 3   3Nt E +2   460 9 6,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0 B O A R D   N R .   2 1
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   1Nt N -1   50 8 6,0 4,0 1 120 2Nt N =     8 2,0 2,0 1   2♠ N -1   100 8 4,0
2,0 2 150 3 S +2     3 4,0 2,0 2   2♠ E +1   140 3 4,0 6,0 2 140 2♠ N +1     3 0,0
4,0 9 170 3 S +3     5 2,0 6,0 9 180 2Nt N +2     5 0,0 4,0 9 50 3♣ W -1     5 2,0
6,0 4 200 3 W -2     7 0,0 0,0 4   2♠x E +1   870 7 6,0 0,0 4   1Nt S -3   300 7 6,0
B O A R D   N R .   2 2 B O A R D   N R .   2 3 B O A R D   N R .   2 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6,0 1 200 3♠ W -2     3 0,0 0,0 1 80 1 N =     3 6,0 5,0 1   3Nt W =   400 3 1,0
0,0 9   3 N -1   50 4 6,0 3,0 9 140 3♠ S =     4 3,0 1,0 9   3Nt E +1   430 4 5,0
4,0 7 140 2 S +1     8 2,0 6,0 7 170 2♠ S +2     8 0,0 1,0 7   3Nt E +1   430 8 5,0
2,0 2 110 2 N =     6 4,0 3,0 2 140 3♠ S =     6 3,0 5,0 2   3Nt E =   400 6 1,0
B O A R D   N R .   2 5 B O A R D   N R .   2 6 B O A R D   N R .   2 7
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
2,0 1   3Nt S -1   50 4 4,0 0,0 1 600 3Nt S =     4 6,0 3,0 1 450 4♠ N +1     4 3,0
2,0 5   4 S -1   50 8 4,0 2,0 5 630 3Nt N +1     8 4,0 3,0 5 450 4♠ N +1     8 3,0
6,0 7 400 3Nt S =     2 0,0 6,0 7 690 3Nt N +3     2 0,0 3,0 7 450 4♠ N +1     2 3,0
2,0 6   4 S -1   50 3 4,0 4,0 6 650 4 S +1     3 2,0 3,0 6 450 4♠ N +1     3 3,0