M U S T A M Ä E   B R I D Ž I K L U B I B O A R D   N R .   1 B O A R D   N R .   2
P A A R I T U R N I I R   -   2 7 . 0 3 . 2 0 1 9 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   2 7 . 0 3 . 2 0 1 9   1 5 : 5 0 : 2 0 10,0 1 140 3 S =     2 2,0 5,0 1   4♣ E =   130 2 7,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 12,0 7 180 1Nt N +3     9 0,0 11,0 7 50 3 E -1     9 1,0
1 65,71% 8 Heinlo, Liidia Heinlo, Aavo 0,0 11   2Nt N -2   100 13 12,0 11,0 11 50 3Nt E -1     13 1,0
2 56,41% 7 Kuld, Enno Kobin, Juhan 8,0 8 120 2Nt S =     4 4,0 0,0 8   3Nt W +1   430 4 12,0
3 56,09% 2 Hibus, Peeter Abram, Maks 4,0 6 110 2 N =     12 8,0 8,0 6   3 E =   110 12 4,0
4 55,77% 4 Lehesalu, Agu Kukemilk, Toomas 4,0 5 110 1 N +1     3 8,0 5,0 5   2♣ W +2   130 3 7,0
5 54,81% 12 Kolk, Marek Leis, Paul 4,0 14 110 2 N =     10 8,0 2,0 14   3Nt W =   400 10 10,0
6 53,21% 6 Laugen, Ülo Ruubel, Taavi B O A R D   N R .   3 B O A R D   N R .   4
7 51,92% 1 Hiibus, Reet Suurväli, Albert P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
8 48,72% 5 Kallas, Orm Ivarinen, Tahvana 12,0 1 200 5 W -2     11 0,0 9,0 1 140 3♠ S =     11 3,0
9 48,08% 10 Freiberg, Jüri Aus, Tarmo 4,0 5   2 W +2   130 13 8,0 9,0 5 140 3♠ S =     13 3,0
10 47,44% 13 Niit, Riho Lüdig, Peeter 4,0 12   2 W +2   130 4 8,0 9,0 12 140 3♠ S =     4 3,0
11 46,79% 3 Virkus, Ants Laanemets, Ivo 8,0 2   3♣ N -2   100 14 4,0 9,0 2 140 3♠ S =     14 3,0
12 43,59% 14 Kuivallik, Tõnu Kangur, Konstantin 0,0 10   3Nt E =   600 7 12,0 1,0 10   3♠ S -1   100 7 11,0
13 36,54% 11 Hallika, Toivo Kukkela, Mati 4,0 3   2 W +2   130 9 8,0 1,0 3   3♠ S -1   100 9 11,0
14 34,94% 9 Uuring, Siiri Helmvee, Fatima 10,0 6 100 3Nt E -1     8 2,0 4,0 6 100 4 W -1     8 8,0
B O A R D   N R .   5 B O A R D   N R .   6
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
2,0 1   3♠ E =   140 12 10,0 1,0 1 430 3Nt N +1     12 11,0
4,0 3   2♠ E =   110 4 8,0 8,0 3 460 3Nt S +2     4 4,0
0,0 7   4♠x E =   590 14 12,0 8,0 7 460 3Nt N +2     14 4,0
12,0 11 630 3Nt N +1     6 0,0 8,0 11 460 3Nt S +2     6 4,0
10,0 8 300 4♠x E -2     5 2,0 8,0 8 460 3Nt N +2     5 4,0
6,0 9   4♣ N -1   100 13 6,0 8,0 9 460 3Nt S +2     13 4,0
8,0 10 50 4♠ E -1     2 4,0 1,0 10 430 3Nt S +1     2 11,0
B O A R D   N R .   7 B O A R D   N R .   8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
3,0 1 100 2♠ W -1     7 9,0 10,0 1 50 4 W -1     7 2,0
10,0 9 200 2♣ E -2     14 2,0 1,0 9   3 W +1   170 14 11,0
3,0 5 100 2♠ W -1     6 9,0 1,0 5   3 W +1   170 6 11,0
0,0 12 90 1Nt N =     10 12,0 8,0 12   2♠ N -1   50 10 4,0
7,0 2 120 1Nt N +1     3 5,0 6,0 2   2 W =   110 3 6,0
7,0 13 120 1Nt N +1     4 5,0 4,0 13   3 W =   140 4 8,0
12,0 8 1100 3♣x E -4     11 0,0 12,0 8 100 3 W -2     11 0,0
B O A R D   N R .   9 B O A R D   N R .   1 0
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
12,0 1   3♣ E +1   130 5 0,0 1,0 1   5♣ E +1   620 5 11,0
2,0 13   3Nt W +1   630 6 10,0 7,0 13   3Nt E =   600 6 5,0
10,0 3   2Nt W +2   180 10 2,0 7,0 3   5♣ E =   600 10 5,0
6,0 7   3♠x S -3   500 8 6,0 1,0 7   5♣ E +1   620 8 11,0
4,0 11   3Nt W =   600 9 8,0 7,0 11   5♣ E =   600 9 5,0
8,0 4   2♠x S -2   300 14 4,0 12,0 4 200 5Nt E -2     14 0,0
0,0 2   3Nt W +2   660 12 12,0 7,0 2   5♣ E =   600 12 5,0
B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
9,0 1 100 3♣ W -2     3 3,0 11,0 1 50 3 E -1     3 1,0
12,0 4 170 3♠ S +1     10 0,0 4,0 4   4♠x S -1   200 10 8,0
3,0 9 50 3♣ W -1     8 9,0 0,0 9   4 E =   420 8 12,0
9,0 5 100 4♣ W -2     2 3,0 8,0 5   2 E =   90 2 4,0
6,0 12 90 2 S =     13 6,0 11,0 12 50 4 E -1     13 1,0
0,0 14   1Nt W +2   150 6 12,0 4,0 14   3♠ S -2   200 6 8,0
3,0 11 50 3♣ W -1     7 9,0 4,0 11   3♠ S -2   200 7 8,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
9,0 1 100 5 E -1     9 3,0 12,0 1 200 5 E -4     9 0,0
0,0 14   3 E +1   130 8 12,0 0,0 14   2 E +1   110 8 12,0
2,0 13   3 E =   110 2 10,0 9,0 13 100 3Nt W -2     2 3,0
9,0 3 100 2 W -1     11 3,0 4,0 3   1♣ W =   70 11 8,0
4,0 7   3♠ N -1   100 4 8,0 9,0 7 100 3Nt W -2     4 3,0
9,0 6 100 4 E -1     10 3,0 6,0 6 50 3Nt E -1     10 6,0
9,0 12 100 4 W -1     5 3,0 2,0 12   2♠ S -2   100 5 10,0
B O A R D   N R .   1 5 B O A R D   N R .   1 6
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
2,0 1   2♣ W =   90 13 10,0 7,0 1   3Nt E +1   630 13 5,0
8,0 6 100 3Nt W -2     2 4,0 7,0 6   3Nt W +1   630 2 5,0
0,0 4   2♠ S -2   200 11 12,0 7,0 4   3Nt W +1   630 11 5,0
12,0 9 180 2x S =     12 0,0 0,0 9   3Nt W +2   660 12 12,0
5,0 5 50 2 E -1     14 7,0 7,0 5   3Nt E +1   630 14 5,0
10,0 10 110 3♣ S =     8 2,0 7,0 10   3Nt W +1   630 8 5,0
5,0 7 50 3♣ W -1     3 7,0 7,0 7   3Nt E +1   630 3 5,0
B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 1   6Nt S -1   50 4 8,0 0,0 1   3Nt E +2   460 4 12,0
10,0 10 150 3 N +2     11 2,0 11,0 10 50 3♣ W -1     11 1,0
4,0 14   6 N -1   50 12 8,0 4,0 14   3Nt W +1   430 12 8,0
4,0 13   6Nt N -1   50 7 8,0 4,0 13   3Nt W +1   430 7 8,0
4,0 3   6Nt S -1   50 6 8,0 11,0 3 50 3♣ W -1     6 1,0
4,0 8   6Nt S -1   50 2 8,0 4,0 8   3Nt W +1   430 2 8,0
12,0 5 990 6Nt S =     9 0,0 8,0 5   3♠ E =   140 9 4,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5,0 1 120 2Nt N =     14 7,0 1,0 1   3 E =   110 14 11,0
8,0 8 200 2 E -2     12 4,0 12,0 8 730 3♠x S =     12 0,0
2,0 6   2Nt S -1   50 7 10,0 7,0 6 110 2♠ S =     7 5,0
10,0 4 500 2x E -2     5 2,0 7,0 4 110 1♠ S +1     5 5,0
0,0 9   3Nt S -3   150 10 12,0 7,0 9 110 2♠ S =     10 5,0
12,0 2 1100 2x W -4     11 0,0 7,0 2 110 1♠ S +1     11 5,0
5,0 3 120 1Nt S +1     13 7,0 1,0 3   3 E =   110 13 11,0
B O A R D   N R .   2 1 B O A R D   N R .   2 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
8,0 1 50 3♠ W -1     6 4,0 10,0 1 100 4♠ W -1     6 2,0
8,0 2 50 3Nt E -1     7 4,0 2,0 2   2♠ W +1   140 7 10,0
8,0 10 50 3Nt E -1     5 4,0 2,0 10   3♠ W =   140 5 10,0
12,0 14 100 3♠ W -2     3 0,0 6,0 14   1 E +2   110 3 6,0
2,0 13   5 W +1   420 8 10,0 2,0 13   3♠ W =   140 8 10,0
4,0 11   5 W =   400 12 8,0 8,0 11   3♣x S -1   100 12 4,0
0,0 9   3Nt W +1   430 4 12,0 12,0 9 200 3Nt W -2     4 0,0
B O A R D   N R .   2 3 B O A R D   N R .   2 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5,0 1   1 E +1   110 10 7,0 5,0 1 90 1Nt N =     10 7,0
1,0 11   2 S -2   200 5 11,0 5,0 11 90 1Nt N =     5 7,0
8,0 8 110 2 N =     3 4,0 5,0 8 90 1Nt N =     3 7,0
11,0 6 200 1♠ E -2     9 1,0 5,0 6 90 1Nt S =     9 7,0
1,0 4   3 N -2   200 2 11,0 5,0 4 90 1Nt N =     2 7,0
11,0 12 200 2 E -2     7 1,0 12,0 12 120 2Nt S =     7 0,0
5,0 13   2♠ E =   110 14 7,0 5,0 13 90 1Nt N =     14 7,0
B O A R D   N R .   2 5 B O A R D   N R .   2 6
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
9,0 1   5♣ E +1   620 8 3,0 0,0 1   3Nt E +2   660 8 12,0
2,0 12   6♣ E =   1370 3 10,0 3,0 12   4♠ W +1   650 3 9,0
12,0 2 100 7♣ E -1     9 0,0 10,0 2   3Nt E =   600 9 2,0
0,0 10   6♣ E +1   1390 13 12,0 3,0 10   4 E +1   650 13 9,0
9,0 14   5♣ E +1   620 11 3,0 7,0 14   3Nt E +1   630 11 5,0
4,0 7   5x N -4   800 5 8,0 12,0 7 200 6Nt E -2     5 0,0
6,0 4   5♣ E +2   640 6 6,0 7,0 4   3Nt E +1   630 6 5,0