M U S T A M Ä E   B R I D Ž I K L U B I B O A R D   N R .   1 B O A R D   N R .   2 B O A R D   N R .   3
P A A R I T U R N I I R   -   0 7 . 0 8 . 2 0 1 9 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   0 7 . 0 8 . 2 0 1 9   1 4 : 4 7 : 0 5 7,0 1 150 2Nt S +1     2 1,0 5,0 1   4 E =   420 2 3,0 6,0 1 200 5x E -1     2 2,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 1,0 8   2♠ N -1   50 3 7,0 5,0 8   4 E =   420 3 3,0 2,0 8   5 S -1   50 3 6,0
1 68,98% 1 Hiibus, Reet Suurväli, Albert 4,0 6 80 1♠ N =     9 4,0 5,0 6   4 E =   420 9 3,0 2,0 6   5 S -1   50 9 6,0
2 56,94% 3 Lüdig, Peeter Niit, Riho 7,0 10 150 2♣ S +3     4 1,0 5,0 10   4 E =   420 4 3,0 2,0 10   5 S -1   50 4 6,0
3 52,31% 6 Kuivallik, Tõnu Kangur, Konstantin 1,0 7   3Nt S -1   50 5 7,0 0,0 7   4 E +1   450 5 8,0 8,0 7 420 4 S =     5 0,0
4= 50,00% 9 Laugen, Ülo Ruubel, Taavi B O A R D   N R .   4 B O A R D   N R .   5 B O A R D   N R .   6
4= 50,00% 4 Kobin, Juhan Kuld, Enno P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6= 49,54% 2 Heinlo, Liidia Heinlo, Aavo 3,0 1 150 1Nt N +2     9 5,0 4,0 1 50 3 E -1     9 4,0 4,0 1 500 3x W -2     9 4,0
6= 49,54% 5 Virkus, Ants Laanemets, Ivo 7,0 3 600 3Nt N =     4 1,0 7,0 3 150 3 W -3     4 1,0 4,0 3 500 4♠ E -5     4 4,0
8 44,91% 7 Hallika, Toivo Tulp, Ants 3,0 10 150 1Nt N +2     7 5,0 2,0 10   2 E +1   140 7 6,0 0,0 10   4 S -2   100 7 8,0
9 41,20% 10 Kirsimäe, Anne Kallas, Orm 7,0 5 600 3Nt N =     2 1,0 7,0 5 150 4 W -3     2 1,0 4,0 5 500 3♠x W -2     2 4,0
10 36,57% 8 Kaldjärv, Jaak Kukkela, Matti 0,0 6   3Nt N -1   100 8 8,0 0,0 6   3♣x W =   470 8 8,0 8,0 6 1100 5♣x E -4     8 0,0
B O A R D   N R .   7 B O A R D   N R .   8 B O A R D   N R .   9
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
8,0 1 120 1Nt N +1     7 0,0 6,0 1   4 W =   420 7 2,0 8,0 1 100 1Nt E -1     7 0,0
2,0 4 80 1 S =     2 6,0 6,0 4   4 E =   420 2 2,0 4,0 4   2 E =   110 2 4,0
4,0 5 90 2♣ N =     6 4,0 6,0 5   4 W =   420 6 2,0 2,0 5   1Nt E +1   120 6 6,0
0,0 8   1Nt S -1   100 9 8,0 0,0 8   5x N -4   800 9 8,0 6,0 8   1Nt E =   90 9 2,0
6,0 10 110 2♣ N +1     3 2,0 2,0 10   4 E +1   450 3 6,0 0,0 10   1Nt E +3   180 3 8,0
B O A R D   N R .   1 0 B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 1   1♠ W +1   110 6 4,0 6,0 1 430 3Nt N +1     6 2,0 7,0 1 50 1Nt W -1     6 1,0
8,0 2 200 2♠ E -2     9 0,0 8,0 2 500 3♠x E -3     9 0,0 0,0 2   2♠ N -2   200 9 8,0
1,0 8   2♠ W +1   140 10 7,0 2,0 8   3Nt N -1   50 10 6,0 3,0 8   1Nt W +1   120 10 5,0
6,0 3   1♠ W =   80 7 2,0 2,0 3   3 N -1   50 7 6,0 7,0 3 50 1Nt W -1     7 1,0
1,0 5   2♠ W +1   140 4 7,0 2,0 5   3 S -1   50 4 6,0 3,0 5   1Nt W +1   120 4 5,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4 B O A R D   N R .   1 5
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
8,0 1   3Nt E +1   630 10 0,0 8,0 1   4♣x S -1   100 10 0,0 5,0 1   3Nt E +1   430 10 3,0
1,0 9   3Nt E +3   690 7 7,0 6,0 9   4 E =   130 7 2,0 5,0 9   3Nt W +1   430 7 3,0
5,0 3   3Nt E +2   660 5 3,0 3,0 3   3Nt W =   400 5 5,0 5,0 3   3Nt W +1   430 5 3,0
5,0 4   3Nt E +2   660 6 3,0 3,0 4   3Nt E =   400 6 5,0 5,0 4   3Nt E +1   430 6 3,0
1,0 8   3Nt E +3   690 2 7,0 0,0 8   3♣x S -3   500 2 8,0 0,0 8   3Nt W +2   460 2 8,0
B O A R D   N R .   1 6 B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5,0 1 420 4 N =     5 3,0 7,0 1 110 2♠ S =     5 1,0 4,0 1 100 3♠ E -2     5 4,0
0,0 7   2Nt N -1   50 6 8,0 0,0 7   2 E +1   140 6 8,0 0,0 7 50 2♠ E -1     6 8,0
2,0 4 230 2 N +4     8 6,0 7,0 4 110 2♠ S =     8 1,0 4,0 4 100 3♠ E -2     8 4,0
8,0 2 450 4 N +1     10 0,0 4,0 2 100 3♣ W -2     10 4,0 8,0 2 140 3 S =     10 0,0
5,0 3 420 4 N =     9 3,0 2,0 3   3♠ S -1   50 9 6,0 4,0 3 100 2♠ E -2     9 4,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0 B O A R D   N R .   2 1
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 1 140 2♠ N +1     8 4,0 8,0 1 110 2♣ S +1     8 0,0 8,0 1 1370 6 S =     8 0,0
4,0 6 140 2♠ N +1     10 4,0 3,0 6   2 E =   110 10 5,0 4,0 6 690 3Nt N +3     10 4,0
4,0 2 140 2♠ N +1     3 4,0 3,0 2   2 E =   110 3 5,0 4,0 2 690 3Nt N +3     3 4,0
4,0 9 140 2♠ N +1     5 4,0 3,0 9   2 W =   110 5 5,0 0,0 9 660 3Nt N +2     5 8,0
4,0 4 140 3♠ N =     7 4,0 3,0 4   2 W =   110 7 5,0 4,0 4 690 5Nt N +1     7 4,0
B O A R D   N R .   2 2 B O A R D   N R .   2 3 B O A R D   N R .   2 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
3,0 1   3♠ W =   140 3 5,0 5,0 1   5 W =   650 3 3,0 6,0 1 110 2♠ N =     3 2,0
3,0 10   3♠ W =   140 5 5,0 5,0 10   4 W +1   650 5 3,0 3,0 10   4♠ N -1   50 5 5,0
8,0 9   3 S -1   50 4 0,0 5,0 9   5 W =   650 4 3,0 0,0 9   4♠ S -2   100 4 8,0
6,0 7   2 E +2   130 8 2,0 0,0 7   6x W =   1660 8 8,0 8,0 7 140 2♠ N +1     8 0,0
0,0 2   2♠ E +2   170 6 8,0 5,0 2   4 W +1   650 6 3,0 3,0 2   4♠ N -1   50 6 5,0
B O A R D   N R .   2 5 B O A R D   N R .   2 6 B O A R D   N R .   2 7
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
1,0 1   3Nt E +1   630 4 7,0 5,0 1 110 2 S =     4 3,0 4,0 1 50 6♣ W -1     4 4,0
1,0 5   3Nt W +1   630 8 7,0 0,0 5 100 2♠ W -1     8 8,0 6,0 5 300 6♣x W -2     8 2,0
6,0 7   3Nt E =   600 2 2,0 5,0 7 110 1 S +1     2 3,0 8,0 7 570 2♠x N +1     2 0,0
6,0 6   3Nt E =   600 3 2,0 5,0 6 110 2 S =     3 3,0 2,0 6   4♣ W =   130 3 6,0
6,0 9   3Nt E =   600 10 2,0 5,0 9 110 2 S =     10 3,0 0,0 9   5♣ W +1   420 10 8,0