M U S T A M Ä E   B R I D Ž I K L U B I B O A R D   N R .   1 B O A R D   N R .   2 B O A R D   N R .   3
P A A R I T U R N I I R   -   1 3 . 1 1 . 2 0 1 9 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   1 3 . 1 1 . 2 0 1 9   1 6 : 1 1 : 4 5 5,0 1   4♠x S -2   300 2 3,0 8,0 1 660 3Nt S +2     2 0,0 4,0 1   3♣ E +1   130 2 4,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 5,0 8   4♠x S -2   300 3 3,0 4,0 8 630 3Nt N +1     3 4,0 2,0 8   2Nt E +2   180 3 6,0
1 68,06% 6 Lehesalu, Agu Kukemilk, Toomas 8,0 6 50 5 E -1     9 0,0 0,0 6 150 4 N +1     9 8,0 7,0 6 100 3Nt W -1     9 1,0
2 55,09% 1 Hiibus, Reet Suurväli, Albert 1,0 10   4 E +1   450 4 7,0 4,0 10 630 3Nt S +1     4 4,0 7,0 10 100 3Nt W -1     4 1,0
3 54,63% 3 Kuivallik, Tõnu Kangur, Konstantin 1,0 7   4 E +1   450 5 7,0 4,0 7 630 3Nt S +1     5 4,0 0,0 7   5♣x E =   750 5 8,0
4 54,17% 7 Laugen, Ülo Ruubel, Taavi B O A R D   N R .   4 B O A R D   N R .   5 B O A R D   N R .   6
5 49,54% 5 Niit, Riho Lüdig, Peeter P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6= 47,69% 2 Lüütre, Enn Lepasaar, Leenart 3,0 1   2Nt S -1   100 9 5,0 4,0 1 140 3 N =     9 4,0 2,0 1   2♠ N -2   100 9 6,0
6= 47,69% 8 Hallika, Toivo Tulp, Ants 6,0 3 100 2♣ W -1     4 2,0 1,0 3   4♠ S -1   100 4 7,0 0,0 3   1Nt E +1   120 4 8,0
8 44,91% 4 Teras, Jüri Vassiljev, Aleksander 8,0 10 300 3 W -3     7 0,0 1,0 10   5♠ S -1   100 7 7,0 5,0 10   1Nt W =   90 7 3,0
9 39,35% 9 Kuld, Enno Maalder, Enn 0,0 5   2 N -2   200 2 8,0 6,0 5 170 3♠ S +1     2 2,0 5,0 5   1Nt E =   90 2 3,0
10 38,89% 10 Kukkela, Matti Kaldjärv, Jaak 3,0 6   2 N -1   100 8 5,0 8,0 6 620 4♠ S =     8 0,0 8,0 6 200 1 E -2     8 0,0
B O A R D   N R .   7 B O A R D   N R .   8 B O A R D   N R .   9
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6,0 1 620 4 S =     7 2,0 3,0 1 400 3Nt N =     7 5,0 8,0 1 200 3 W -2     7 0,0
6,0 4 620 4 S =     2 2,0 3,0 4 400 3Nt N =     2 5,0 4,0 4   3♣ N -2   100 2 4,0
6,0 5 620 4 S =     6 2,0 3,0 5 400 3Nt N =     6 5,0 2,0 5   2Nt N -3   150 6 6,0
0,0 8   4 S -1   100 9 8,0 8,0 8 430 3Nt N +1     9 0,0 6,0 8 100 3 W -1     9 2,0
2,0 10 140 2 S +1     3 6,0 3,0 10 400 3Nt N =     3 5,0 0,0 10   4♠ S -4   200 3 8,0
B O A R D   N R .   1 0 B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
2,0 1 140 2 S +1     6 6,0 1,0 1   6 N -2   100 6 7,0 1,0 1   3 N -1   100 6 7,0
6,0 2 170 2 S +2     9 2,0 8,0 2 430 3Nt N +1     9 0,0 1,0 2   3 N -1   100 9 7,0
8,0 8 600 3Nt N =     10 0,0 1,0 8   3Nt N -2   100 10 7,0 7,0 8 140 3 N =     10 1,0
2,0 3 140 2 S +1     7 6,0 6,0 3 420 4 N =     7 2,0 4,0 3 50 3♠ W -1     7 4,0
2,0 5 140 2 S +1     4 6,0 4,0 5 400 3Nt N =     4 4,0 7,0 5 140 1 N +2     4 1,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4 B O A R D   N R .   1 5
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6,0 1 600 3Nt N =     10 2,0 8,0 1 650 5x S =     10 0,0 8,0 1 100 2x W -1     10 0,0
0,0 9   4 N -1   100 7 8,0 1,0 9   2♠ W +1   140 7 7,0 0,0 9   2 N -2   200 7 8,0
2,0 3 120 2Nt S =     5 6,0 5,0 3 450 5 N =     5 3,0 6,0 3 90 1Nt N =     5 2,0
4,0 4 170 3 N +1     6 4,0 1,0 4   2♠ E +1   140 6 7,0 2,0 4   1Nt S -1   100 6 6,0
8,0 8 620 4 N =     2 0,0 5,0 8 450 5 S =     2 3,0 4,0 8   1Nt W =   90 2 4,0
B O A R D   N R .   1 6 B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   3x N -3   500 5 8,0 2,0 1   2♠ E +2   170 5 6,0 6,0 1 600 3Nt N =     5 2,0
2,0 7   3 N -3   150 6 6,0 0,0 7   2x S -2   300 6 8,0 1,0 7   3Nt S -1   100 6 7,0
6,0 4   5x S -1   100 8 2,0 8,0 4 50 4♠ E -1     8 0,0 1,0 4   3Nt S -1   100 8 7,0
4,0 2   2♠ W =   110 10 4,0 5,0 2   2♠ E +1   140 10 3,0 6,0 2 600 3Nt N =     10 2,0
8,0 3 100 4♠ W -1     9 0,0 5,0 3   3♠ E =   140 9 3,0 6,0 3 600 3Nt N =     9 2,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0 B O A R D   N R .   2 1
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
2,0 1 100 3 E -1     8 6,0 2,0 1 200 3♠ S +2     8 6,0 5,0 1 50 4♠ E -1     8 3,0
4,0 6 110 3♣ S =     10 4,0 7,0 6 650 4♠ S +1     10 1,0 5,0 6 50 3♠ E -1     10 3,0
8,0 2 200 4 E -2     3 0,0 4,0 2 630 3Nt N +1     3 4,0 2,0 2   3 S -1   100 3 6,0
6,0 9 130 3 S +1     5 2,0 7,0 9 650 4♠ S +1     5 1,0 8,0 9 300 4♠x E -2     5 0,0
0,0 4   3♠ S -1   50 7 8,0 0,0 4 170 3♠ S +1     7 8,0 0,0 4   3♠ E =   140 7 8,0
B O A R D   N R .   2 2 B O A R D   N R .   2 3 B O A R D   N R .   2 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5,0 1   1Nt W =   90 3 3,0 2,0 1   3Nt N -2   200 3 6,0 6,0 1 430 3Nt S +1     3 2,0
5,0 10   1Nt W =   90 5 3,0 6,0 10 140 2♠ S +1     5 2,0 0,0 10   3Nt N -1   50 5 8,0
0,0 9   1Nt W +2   150 4 8,0 0,0 9   3Nt N -5   500 4 8,0 6,0 9 430 3Nt S +1     4 2,0
8,0 7 80 1♠ N =     8 0,0 8,0 7 150 2Nt N +1     8 0,0 6,0 7 430 3Nt N +1     8 2,0
2,0 2   1Nt W +1   120 6 6,0 4,0 2 90 1Nt N =     6 4,0 2,0 2 400 3Nt S =     6 6,0
B O A R D   N R .   2 5 B O A R D   N R .   2 6 B O A R D   N R .   2 7
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
7,0 1 200 2♠ W -2     4 1,0 8,0 1 620 4♠ N =     4 0,0 5,0 1 400 3Nt N =     4 3,0
1,0 5   1Nt E =   90 8 7,0 4,0 5 170 2♠ N +2     8 4,0 5,0 5 400 3Nt N =     8 3,0
7,0 7 200 2Nt E -2     2 1,0 4,0 7 170 3♠ N +1     2 4,0 0,0 7   3Nt N -1   50 2 8,0
1,0 6   1Nt E =   90 3 7,0 4,0 6 170 2♠ N +2     3 4,0 5,0 6 400 5 N =     3 3,0
4,0 9 100 1Nt E -1     10 4,0 0,0 9 140 2♠ N +1     10 8,0 5,0 9 400 3Nt N =     10 3,0