M U S T A M Ä E   B R I D Ž I K L U B I B O A R D   N R .   1 B O A R D   N R .   2 B O A R D   N R .   3
P A A R I T U R N I I R   -   2 7 . 1 1 . 2 0 1 9 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   2 7 . 1 1 . 2 0 1 9   1 5 : 4 9 : 1 3 5,0 1   4♠ N -1   50 2 3,0 5,0 1   3♣ W =   110 2 3,0 1,0 1   3Nt N -2   100 2 7,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 8,0 8 300 4x E -2     3 0,0 2,0 8   1Nt W +2   150 3 6,0 8,0 8 170 3 N +1     3 0,0
1 56,94% 7 Kuld, Enno Maalder, Enn 5,0 6   4♠ S -1   50 9 3,0 0,0 6   1Nt W +3   180 9 8,0 5,0 6 130 2♣ S +2     9 3,0
2 56,02% 6 Lehesalu, Agu Kukemilk, Toomas 2,0 10   4♠ S -2   100 4 6,0 5,0 10   3♣ W =   110 4 3,0 1,0 10   3Nt N -2   100 4 7,0
3 52,78% 1 Hallika, Toivo Tulp, Ants 0,0 7   4♠x N -2   300 5 8,0 8,0 7 50 3♣ W -1     5 0,0 5,0 7 130 3♣ S +1     5 3,0
4= 51,85% 2 Laugen, Ülo Ruubel, Taavi B O A R D   N R .   4 B O A R D   N R .   5 B O A R D   N R .   6
4= 51,85% 10 Kolk, Marek Puiestik, Peep P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6 49,07% 5 Teras, Jüri Vassiljev, Aleksander 2,0 1   4♠ E +2   680 9 6,0 8,0 1 150 2Nt W -3     9 0,0 2,0 1 170 2 S +2     9 6,0
7 47,69% 4 Jänes, Taivo Aava, Jaak 6,0 3   4♠ W +1   650 4 2,0 2,0 3   2 E =   110 4 6,0 2,0 3 170 2 S +2     4 6,0
8 47,22% 9 Niit, Riho Lüdig, Peeter 2,0 10   4♠ W +2   680 7 6,0 0,0 10   2 S -5   500 7 8,0 7,0 10 200 1 S +4     7 1,0
9 44,91% 3 Kuivallik, Tõnu Kangur, Konstantin 2,0 5   4♠ W +2   680 2 6,0 5,0 5   1Nt W =   90 2 3,0 7,0 5 200 2 N +3     2 1,0
10 41,67% 8 Kukkela, Mati Helmvee, Fatima 8,0 6 100 6♠ W -1     8 0,0 5,0 6   1Nt E =   90 8 3,0 2,0 6 170 2 S +2     8 6,0
B O A R D   N R .   7 B O A R D   N R .   8 B O A R D   N R .   9
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6,0 1 180 1Nt N +3     7 2,0 5,0 1 50 3Nt W -1     7 3,0 6,0 1 120 1Nt N +1     7 2,0
0,0 4   1Nt N -1   100 2 8,0 0,0 4   2♣ E +1   110 2 8,0 2,0 4 110 2 S +1     2 6,0
2,0 5 120 1Nt N +1     6 6,0 5,0 5 50 3Nt E -1     6 3,0 0,0 5   3Nt S -2   100 6 8,0
8,0 8 600 3Nt N =     9 0,0 5,0 8 50 3Nt W -1     9 3,0 6,0 8 120 1Nt S +1     9 2,0
4,0 10 170 2 N +4     3 4,0 5,0 10 50 3♠ W -1     3 3,0 6,0 10 120 1Nt S +1     3 2,0
B O A R D   N R .   1 0 B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
1,0 1 100 4♠ E -1     6 7,0 6,0 1 400 5 S =     6 2,0 2,0 1   4♠ W =   420 6 6,0
6,0 2 200 4♠ E -2     9 2,0 4,0 2 150 4 S +1     9 4,0 6,0 2   3♠ W =   140 9 2,0
1,0 8 100 4♠ E -1     10 7,0 8,0 8 920 6 S =     10 0,0 8,0 8   1Nt W +1   120 10 0,0
6,0 3 200 4♠ E -2     7 2,0 1,0 3   3Nt S -1   50 7 7,0 2,0 3   4♠ W =   420 7 6,0
6,0 5 200 4♠ E -2     4 2,0 1,0 5   3Nt S -1   50 4 7,0 2,0 5   4♠ W =   420 4 6,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4 B O A R D   N R .   1 5
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 1   2♠ N -1   100 10 4,0 3,0 1 480 5♠ N +1     10 5,0 8,0 1   1Nt W =   90 10 0,0
6,0 9 110 2♠ N =     7 2,0 8,0 9 980 6♠ N =     7 0,0 5,0 9   3 W +1   130 7 3,0
8,0 3 140 2♠ N +1     5 0,0 3,0 3 480 4♠ N +2     5 5,0 5,0 3   2 W +2   130 5 3,0
1,0 4   4♠ N -2   200 6 7,0 3,0 4 480 5♠ N +1     6 5,0 0,0 4   3 N -3   300 6 8,0
1,0 8   4♠ N -2   200 2 7,0 3,0 8 480 4♠ N +2     2 5,0 2,0 8   2 W +3   150 2 6,0
B O A R D   N R .   1 6 B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   4 S -3   150 5 8,0 3,0 1   1Nt S -1   50 5 5,0 1,0 1 50 3 W -1     5 7,0
5,0 7 90 2 S =     6 3,0 7,0 7 90 1Nt N =     6 1,0 5,0 7 100 2x E -1     6 3,0
8,0 4 110 3 S =     8 0,0 7,0 4 90 1Nt S =     8 1,0 5,0 4 100 3 E -2     8 3,0
2,0 2   5♣ N -2   100 10 6,0 0,0 2   2♠ E =   110 10 8,0 8,0 2 120 1Nt N +1     10 0,0
5,0 3 90 2 S =     9 3,0 3,0 3   2 N -1   50 9 5,0 1,0 3 50 2 E -1     9 7,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0 B O A R D   N R .   2 1
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6,0 1   3♣ W +2   150 8 2,0 8,0 1 930 3♠x N +1     8 0,0 8,0 1 500 3Ntx W -3     8 0,0
2,0 6   3Nt W +2   660 10 6,0 2,0 6   2 W +2   130 10 6,0 4,0 6   1Nt W =   90 10 4,0
2,0 2   3Nt W +2   660 3 6,0 6,0 2 140 3♠ S =     3 2,0 4,0 2   1Nt W =   90 3 4,0
8,0 9 100 6♣ W -1     5 0,0 0,0 9   2 W +1   140 5 8,0 4,0 9   1Nt W =   90 5 4,0
2,0 4   3Nt W +2   660 7 6,0 4,0 4 100 4 W -1     7 4,0 0,0 4   1Nt W +1   120 7 8,0
B O A R D   N R .   2 2 B O A R D   N R .   2 3 B O A R D   N R .   2 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6,0 1   3Nt E =   600 3 2,0 4,0 1   1♠ W =   80 3 4,0 3,0 1 450 4 N +1     3 5,0
6,0 10   3Nt E =   600 5 2,0 7,0 10 100 3♠ W -1     5 1,0 3,0 10 450 4 N +1     5 5,0
1,0 9   3Nt E +1   630 4 7,0 7,0 9 100 3♠ W -1     4 1,0 3,0 9 450 4 N +1     4 5,0
6,0 7   3Nt E =   600 8 2,0 2,0 7   1Nt S -1   100 8 6,0 8,0 7 480 4 S +2     8 0,0
1,0 2   3Nt W +1   630 6 7,0 0,0 2   3 S -2   200 6 8,0 3,0 2 450 4 N +1     6 5,0
B O A R D   N R .   2 5 B O A R D   N R .   2 6 B O A R D   N R .   2 7
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6,0 1 80 1♠ S =     4 2,0 2,0 1 630 3Nt N +1     4 6,0 3,0 1   4♠ E +2   480 4 5,0
8,0 5 140 2♠ S +1     8 0,0 6,0 5 690 3Nt N +3     8 2,0 3,0 5   5♠ E +1   480 8 5,0
3,0 7   2♠ S -1   50 2 5,0 6,0 7 690 3Nt N +3     2 2,0 8,0 7   5♣ W +1   420 2 0,0
0,0 6   2♠ S -2   100 3 8,0 6,0 6 690 3Nt N +3     3 2,0 3,0 6   4♠ W +2   480 3 5,0
3,0 9   2Nt N -1   50 10 5,0 0,0 9   3Nt E +3   690 10 8,0 3,0 9   4♠ E +2   480 10 5,0