M U S T A M Ä E   B R I D Ž I K L U B I B O A R D   N R .   1 B O A R D   N R .   2 B O A R D   N R .   3
P A A R I T U R N I I R   -   1 1 . 1 2 . 2 0 1 9 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   1 1 . 1 2 . 2 0 1 9   1 6 : 0 0 : 1 3 4,0 1   2Nt W +1   150 2 4,0 3,0 1   3 W +1   130 2 5,0 8,0 1 430 3Nt S +1     2 0,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 0,0 8   4 W +1   450 3 8,0 0,0 8   4 N -2   200 3 8,0 0,0 8   3♠ N -1   50 3 8,0
1 65,74% 3 Lüütre, Enn Lepasaar, Leenart 6,0 6 50 5♣ E -1     9 2,0 3,0 6   3 W +1   130 9 5,0 4,0 6 150 3♣ S +2     9 4,0
2 58,80% 1 Hallika, Toivo Tulp, Ants 8,0 10 100 4 E -2     4 0,0 7,0 10   2 W +1   110 4 1,0 6,0 10 400 3Nt E -4     4 2,0
3 56,71% 5 Teras, Jüri Vassiljev, Aleksander 2,0 7   3Nt W =   400 5 6,0 7,0 7   2 W +1   110 5 1,0 2,0 7 140 3♠ N =     5 6,0
4 53,01% 6 Maalder, Enn Kuld, Enno B O A R D   N R .   4 B O A R D   N R .   5 B O A R D   N R .   6
5 52,78% 9 Koppel, Marju Lond, Peeter P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6 49,26% 7 Niit, Riho Lüdig, Peeter 2,8 1 300 3Nt W -3     9 5,2 6,5 1 100 4♠ E -2     9 1,5 7,8 1 200 2Nt W -2     9 0,2
7 46,76% 4 Lehesalu, Agu Kukemilk, Toomas 6,5 3 500 5x W -2     4 1,5 0,2 3   4♠ W =   420 4 7,8 0,2 3   4♠ W +2   680 4 7,8
8 42,36% 8 Kuivallik, Tõnu Kangur, Konstantin 3,2 10 40%         60% 7 4,8 3,2 10 40%         60% 7 4,8 3,2 10 40%         60% 7 4,8
9 41,90% 2 Laugen, Ülo Ruubel, Taavi 6,5 5 500 5♣x W -2     2 1,5 2,8 5 50 3♠ E -1     2 5,2 5,2 5   3 W +2   150 2 2,8
10 32,69% 10 Virkus, Ants Laanemets, Ivo 0,2 6   4♠ S -2   200 8 7,8 6,5 6 100 4♠ E -2     8 1,5 2,8 6   2 W +4   170 8 5,2
B O A R D   N R .   7 B O A R D   N R .   8 B O A R D   N R .   9
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
7,0 1 100 4 E -1     7 1,0 8,0 1 150 3 W -3     7 0,0 8,0 1   3 S -1   50 7 0,0
3,0 4   5x S -2   500 2 5,0 4,0 4 110 2♠ N =     2 4,0 3,0 4   2Nt W +1   150 2 5,0
7,0 5 100 4 E -1     6 1,0 2,0 5 100 2♣ W -2     6 6,0 6,0 5   2 N -2   100 6 2,0
3,0 8   5x S -2   500 9 5,0 6,0 8 140 3♠ N =     9 2,0 3,0 8   1Nt W +2   150 9 5,0
0,0 10   4 E =   620 3 8,0 0,0 10   2♠ N -1   50 3 8,0 0,0 10   1♠ E +3   170 3 8,0
B O A R D   N R .   1 0 B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
1,0 1   2♠ N -2   200 6 7,0 8,0 1 1020 6Nt S +1     6 0,0 5,0 1   4 W +1   450 6 3,0
1,0 2   4 S -2   200 9 7,0 5,0 2 990 6Nt S =     9 3,0 5,0 2   4 W +1   450 9 3,0
8,0 8 620 4 S =     10 0,0 5,0 8 990 6Nt S =     10 3,0 8,0 8   5♣ E +1   420 10 0,0
4,0 3   4 N -1   100 7 4,0 0,0 3 490 3Nt N +3     7 8,0 0,0 3   3Nt E +3   490 7 8,0
6,0 5 130 4 N =     4 2,0 2,0 5 980 6♠ S =     4 6,0 2,0 5   3Nt E +2   460 4 6,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4 B O A R D   N R .   1 5
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
8,0 1 100 3Nt E -1     10 0,0 8,0 1   4♠ E +2   480 10 0,0 8,0 1 630 3Nt S +1     10 0,0
6,0 9   4 E =   620 7 2,0 6,0 9   4♠ W +3   510 7 2,0 2,0 9   4♠ S -2   200 7 6,0
4,0 3   3Nt W +1   630 5 4,0 1,0 3   6♠ E +1   1010 5 7,0 4,0 3 100 4x E -1     5 4,0
1,0 4   4 W +1   650 6 7,0 1,0 4   6♠ E +1   1010 6 7,0 6,0 4 300 5x W -2     6 2,0
1,0 8   4 W +1   650 2 7,0 4,0 8   6Nt W =   990 2 4,0 0,0 8   4x W +1   690 2 8,0
B O A R D   N R .   1 6 B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
3,0 1   2♠ E +1   140 5 5,0 2,0 1   3♠ W +2   200 5 6,0 0,0 1   4 E =   420 5 8,0
0,0 7   2♠ E +2   170 6 8,0 6,0 7 50 4♠ E -1     6 2,0 2,0 7   3 E +1   170 6 6,0
3,0 4   2♠ E +1   140 8 5,0 8,0 4 100 5♠x E -1     8 0,0 5,0 4   3 E =   140 8 3,0
7,0 2 100 4♠ E -1     10 1,0 0,0 2   4♠ E =   420 10 8,0 8,0 2   2Nt W =   120 10 0,0
7,0 3 100 3♣ W -1     9 1,0 4,0 3   5x N -1   100 9 4,0 5,0 3   2 E +1   140 9 3,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0 B O A R D   N R .   2 1
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5,0 1   1 W +2   140 8 3,0 8,0 1 200 3♠ W -2     8 0,0 3,0 1 660 4Nt N +1     8 5,0
8,0 6 140 2♠ S +1     10 0,0 6,0 6 170 3 S +1     10 2,0 3,0 6 660 3Nt N +2     10 5,0
0,0 2   4 W =   620 3 8,0 1,0 2   4 N -4   400 3 7,0 3,0 2 660 3Nt N +2     3 5,0
2,0 9   2 W +2   170 5 6,0 4,0 9   3♣ S -1   100 5 4,0 3,0 9 660 3Nt N +2     5 5,0
5,0 4   2 W +1   140 7 3,0 1,0 4   3Nt S -4   400 7 7,0 8,0 4 690 3Nt S +3     7 0,0
B O A R D   N R .   2 2 B O A R D   N R .   2 3 B O A R D   N R .   2 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   3 S -2   100 3 8,0 2,0 1   2 W +1   140 3 6,0 4,0 1   2 E +4   230 3 4,0
6,0 10 110 2 S +1     5 2,0 7,0 10 100 4 W -1     5 1,0 2,0 10   4 E =   420 5 6,0
8,0 9 130 3 S +1     4 0,0 7,0 9 100 4 W -1     4 1,0 7,0 9   2 E +3   200 4 1,0
4,0 7 100 3♣ E -1     8 4,0 2,0 7   3 W =   140 8 6,0 7,0 7   2♠ W +3   200 8 1,0
2,0 2 90 2 S =     6 6,0 2,0 2   2 W +1   140 6 6,0 0,0 2   4 E +1   450 6 8,0
B O A R D   N R .   2 5 B O A R D   N R .   2 6 B O A R D   N R .   2 7
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
3,0 1 140 2 S +1     4 5,0 2,0 1   2 E =   90 4 6,0 2,0 1   5x E =   550 4 6,0
6,0 5 150 1Nt S +2     8 2,0 0,0 5   2♣ S -1   100 8 8,0 6,0 5 140 3 N =     8 2,0
8,0 7 170 2 S +2     2 0,0 7,0 7 200 3x W -1     2 1,0 4,0 7   3 N -1   50 2 4,0
0,0 6 120 1Nt S +1     3 8,0 4,0 6 100 3 E -1     3 4,0 0,0 6   5x N -4   800 3 8,0
3,0 9 140 2 S +1     10 5,0 7,0 9 200 3 E -2     10 1,0 8,0 9 530 3x N =     10 0,0