M U S T A M Ä E   B R I D Ž I K L U B I B O A R D   N R .   1 B O A R D   N R .   2 B O A R D   N R .   3
P A A R I T U R N I I R   -   0 8 . 0 1 . 2 0 2 0 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   0 8 . 0 1 . 2 0 2 0   1 6 : 0 8 : 1 1 4,0 1   1Nt W =   90 2 2,0 2,0 1   5 W =   450 2 4,0 6,0 1 200 2♣ E -2     2 0,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 0,0 8   3♣ W +1   130 3 6,0 0,0 8   6 E =   980 3 6,0 2,0 8 110 2 S =     3 4,0
1 67,36% 7 Lüütre, Enn Lepasaar, Leenart 2,0 6   3 S -2   100 9 4,0 6,0 6 300 6Ntx E -2     9 0,0 0,0 6   3 S -1   50 9 6,0
2 55,56% 3 Kangur, Konstantin Suurväli, Albert 6,0 7 50 1♠ E -1     5 0,0 4,0 7 50 6 W -1     5 2,0 4,0 7 170 3 S +1     5 2,0
3 54,86% 1 Hallika, Toivo Tulp, Ants B O A R D   N R .   4 B O A R D   N R .   5 B O A R D   N R .   6
4 54,17% 8 Lehesalu, Agu Kukemilk, Toomas P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5= 49,31% 9 Vilumets, Priit Helmvee, Fatima 4,0 1 600 3Nt S =     9 2,0 6,0 1 180 2Nt N +2     9 0,0 1,0 1   3♣ E =   110 9 5,0
5= 49,31% 4 Laugen, Ülo Ruubel, Taavi 0,0 3   3Nt N -3   300 4 6,0 4,0 3 90 1Nt N =     4 2,0 1,0 3   3♣ E =   110 4 5,0
7 45,83% 2 Niit, Riho Lüdig, Peeter 6,0 5 630 3Nt S +1     2 0,0 1,0 5   1Nt N -1   100 2 5,0 4,0 5 110 2 N =     2 2,0
8 39,58% 5 Virkus, Ants Laanemets, Ivo 2,0 6   3Nt N -1   100 8 4,0 1,0 6   2 N -1   100 8 5,0 6,0 6 140 3 N =     8 0,0
9 34,03% 6 Kuld, Enno Maalder, Enn B O A R D   N R .   7 B O A R D   N R .   8 B O A R D   N R .   9
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
3,0 1 200 4♠ E -2     7 3,0 2,0 1 200 3♠ S +2     7 4,0 5,0 1 420 5 N +1     7 1,0
3,0 4 200 4♠ E -2     2 3,0 5,0 4 420 4♠ S =     2 1,0 2,0 4 400 3Nt N =     2 4,0
6,0 5 300 4♠ E -3     6 0,0 5,0 5 420 4♠ S =     6 1,0 0,0 5 150 3 N +2     6 6,0
0,0 8   2♠ E =   110 9 6,0 0,0 8 170 3♠ S +1     9 6,0 5,0 8 420 5 N +1     9 1,0
B O A R D   N R .   1 0 B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 1 140 2♠ S +1     6 2,0 5,0 1   3♠ W +1   170 6 1,0 5,0 1 140 2 N +1     6 1,0
6,0 2 170 2♠ S +2     9 0,0 2,0 2   2♠ W +3   200 9 4,0 5,0 2 140 3 N =     9 1,0
0,0 3   2♠ S -1   100 7 6,0 5,0 3   1♠ W +3   170 7 1,0 0,0 3   4 S -2   200 7 6,0
2,0 5   1Nt E =   90 4 4,0 0,0 5   4♠ W =   420 4 6,0 2,0 5 90 1Nt S =     4 4,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4 B O A R D   N R .   1 5
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 9   1Nt W =   90 7 2,0 1,0 9 420 5 N +1     7 5,0 0,0 9   1Nt E +3   180 7 6,0
0,0 3   1Nt S -3   300 5 6,0 1,0 3 420 5 S +1     5 5,0 6,0 3   2 S -1   100 5 0,0
2,0 4   1Nt N -2   200 6 4,0 5,0 4 490 3Nt N +3     6 1,0 3,0 4   2♣ E +3   150 6 3,0
6,0 8 90 1Nt N =     2 0,0 5,0 8 490 3Nt S +3     2 1,0 3,0 8   1Nt E +2   150 2 3,0
B O A R D   N R .   1 6 B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 1 210 1Nt S +4     5 2,0 5,0 1   2♠ E =   110 5 1,0 4,0 1 90 1Nt S =     5 2,0
6,0 7 400 3Nt S =     6 0,0 5,0 7   2 W +1   110 6 1,0 2,0 7   2Nt S -1   100 6 4,0
2,0 4 150 1Nt S +2     8 4,0 0,0 4   2♠ E +2   170 8 6,0 0,0 4   3Nt S -2   200 8 6,0
0,0 9 90 1Nt S =     3 6,0 2,0 3   2Nt W +1   150 9 4,0 6,0 3 660 3Nt S +2     9 0,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0 B O A R D   N R .   2 1
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
2,0 1   5x N -2   300 8 4,0 4,0 1   3♣ S -2   200 8 2,0 4,0 1   2 E +4   230 8 2,0
4,0 2 100 4♠ E -1     3 2,0 4,0 2   2 N -2   200 3 2,0 1,0 2   4 W +1   450 3 5,0
6,0 9 200 6♠x E -1     5 0,0 4,0 9   3 N -2   200 5 2,0 6,0 9   3 W +1   170 5 0,0
0,0 4   4♠ E +1   650 7 6,0 0,0 4   3 N -3   300 7 6,0 1,0 4   4 W +1   450 7 5,0
B O A R D   N R .   2 2 B O A R D   N R .   2 3 B O A R D   N R .   2 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1   2 W +2   170 3 6,0 1,0 1   3Nt W +2   660 3 5,0 4,0 1   4♠ E =   420 3 2,0
5,0 9 100 4 W -1     4 1,0 4,0 9   3Nt E +1   630 4 2,0 2,0 9   3Nt W +1   430 4 4,0
2,0 7   2 W +1   140 8 4,0 1,0 7   4Nt W +1   660 8 5,0 0,0 7   4♠ W +1   450 8 6,0
5,0 2 100 4 W -1     6 1,0 6,0 2 200 6Ntx W -1     6 0,0 6,0 2   3x N -1   100 6 0,0
B O A R D   N R .   2 5 B O A R D   N R .   2 6 B O A R D   N R .   2 7
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
0,0 1 110 2♠ S =     4 6,0 4,0 1 140 2♠ N +1     4 2,0 0,0 1   3Nt W +1   430 4 6,0
2,0 5 120 1Nt S +1     8 4,0 1,0 5   3Nt S -1   100 8 5,0 6,0 5 50 4♠ W -1     8 0,0
6,0 7 200 2 W -2     2 0,0 6,0 7 600 3Nt S =     2 0,0 4,0 7   3Nt W =   400 2 2,0
4,0 6 140 3♠ S =     3 2,0 1,0 6   3Nt S -1   100 3 5,0 2,0 6   4♠ W =   420 3 4,0