T A L L I N N A   S E E N I O R I D E   B R I D Ž I   K L U B I B O A R D   N R .   1 B O A R D   N R .   2
P A A R I T U R N I I R   -   2 4 . 0 1 . 2 0 1 7 P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
G E N E R E E R I T U D   :   2 4 . 0 1 . 2 0 1 7   1 5 : 5 1 : 0 9 2,0 1   4 S -2   100 2 10,0 3,0 1   3Nt W +2   460 2 9,0
RESULTS PRODUCED BY VAMBOLA KASE - BRIDGE CALCULATIONS PROGRAM 8,0 7 140 3♠ S =     9 4,0 0,0 7   3Ntx W +1   650 9 12,0
1 66,35% 14 Suimets Ahti Ivarinen Tahvan 4,0 11 100 3♣ E -2     13 8,0 11,0 11   4 W +1   150 13 1,0
2 66,03% 2 Lehesalu Ago Kukemilk Toomas 0,0 8   4♠ N -3   150 4 12,0 8,0 8   3Nt E =   400 4 4,0
3 61,22% 6 Kolk, Ants Ebenik Rein 12,0 6 150 3Nt W -3     12 0,0 6,0 6   3Nt E +1   430 12 6,0
4 58,01% 5 Kangur Konstantin Suurväli Albert 8,0 5 140 2 N +1     3 4,0 3,0 5   3Nt E +2   460 3 9,0
5 55,77% 8 Maalder, Enn Toonekurg Rein 8,0 14 140 2♠ N +1     10 4,0 11,0 14   3 W +2   150 10 1,0
6 50,32% 11 Hallika, Toivo Niit, Riho B O A R D   N R .   3 B O A R D   N R .   4
7 50,00% 1 Palm, Ludmilla Pärn, Mall P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
8= 45,83% 4 Hiibus, Reet Kuld Enno 1,0 1   3♠ W +1   170 11 11,0 6,0 1 600 3Nt N =     11 6,0
8= 45,83% 7 Virkus Ants Aavekukk, Agu 12,0 5 90 1Nt S =     13 0,0 11,0 5 650 4♠ S +1     13 1,0
10 45,51% 9 Kirsimäe Anne Kallas Orm 9,0 12   3 S -2   100 4 3,0 8,0 12 620 4♠ S =     4 4,0
11 44,87% 10 Uuring Siiri Helmvee Fatima 5,0 2   3♠ W =   140 14 7,0 2,0 2   3Nt S -1   100 14 10,0
12 43,59% 12 Ruubel, Taavi Laugen Ülo 5,0 10   3♠ W =   140 7 7,0 11,0 10 650 4♠ S +1     7 1,0
13 34,62% 3 Kotkas, Tõnis Daum, Ants 1,0 3   3♠ W +1   170 9 11,0 4,0 3 170 3 N +3     9 8,0
14 32,05% 13 Tamm Marje Tamm Eugen 9,0 6   3 S -2   100 8 3,0 0,0 6   4 N -3   300 8 12,0
B O A R D   N R .   5 B O A R D   N R .   6
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
10,0 1 150 3 N +2     12 2,0 10,0 1 450 4 N +1     12 2,0
5,0 3   3Nt N -1   100 4 7,0 3,0 3 170 1♠ N +3     4 9,0
12,0 7 660 3Nt N +2     14 0,0 10,0 7 450 4 S +1     14 2,0
1,0 11   4♠ S -2   200 6 11,0 3,0 11 170 2 N +2     6 9,0
8,0 8 140 2♠ S +1     5 4,0 6,0 8 200 2♠ N +3     5 6,0
1,0 9   5x N -1   200 13 11,0 10,0 9 450 4♠ N +1     13 2,0
5,0 10   3Nt N -1   100 2 7,0 0,0 10 140 2 N +1     2 12,0
B O A R D   N R .   7 B O A R D   N R .   8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
5,0 1   3♣ N -2   200 7 7,0 5,0 1   2 W +1   140 7 7,0
5,0 9   1♠ S -2   200 14 7,0 2,0 9   2♠ E +2   170 14 10,0
11,0 5 110 2♠ S =     6 1,0 10,0 5 50 2Nt E -1     6 2,0
1,0 12   3♠ S -3   300 10 11,0 0,0 12   4♣x S -2   300 10 12,0
8,0 2   3♣ N -1   100 3 4,0 12,0 2 120 1Nt S +1     3 0,0
1,0 13   2♠ S -3   300 4 11,0 5,0 13   2 W +1   140 4 7,0
11,0 8 110 3♣ N =     11 1,0 8,0 8   3Nt S -1   50 11 4,0
B O A R D   N R .   9 B O A R D   N R .   1 0
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
7,0 1 100 3Nt W -1     5 5,0 1,0 1 620 5♣ S +1     5 11,0
3,0 13   3♣ E +1   130 6 9,0 6,0 13 660 3Nt N +2     6 6,0
11,0 3 200 3Nt W -2     10 1,0 1,0 3 620 5♣ S +1     10 11,0
7,0 7 100 3Nt W -1     8 5,0 8,0 7 690 3Nt N +3     8 4,0
3,0 11   3♣ E +1   130 9 9,0 10,0 11 1370 6♣ N =     9 2,0
0,0 4   1Nt W +3   180 14 12,0 4,0 4 630 3Nt N +1     14 8,0
11,0 2 200 3Nt W -2     12 1,0 12,0 2 1400 2♠x E -5     12 0,0
B O A R D   N R .   1 1 B O A R D   N R .   1 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
11,0 1 300 5♣x W -2     3 1,0 2,0 1   3Nt E +3   490 3 10,0
11,0 4 300 5♣x W -2     10 1,0 10,0 4   3♣ E =   110 10 2,0
6,0 9 100 5♣x W -1     8 6,0 0,0 9   3Nt E +4   520 8 12,0
2,0 5   4♣ W +1   150 2 10,0 4,0 5   3Nt E +1   430 2 8,0
8,0 12 140 3 N =     13 4,0 8,0 12   4 W =   130 13 4,0
0,0 14   4♣x W =   510 6 12,0 12,0 14 100 5 W -2     6 0,0
4,0 11   3♣ W +1   130 7 8,0 6,0 11   3Nt W =   400 7 6,0
B O A R D   N R .   1 3 B O A R D   N R .   1 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
12,0 1 110 2♠ N =     9 0,0 12,0 1 590 4♠x S =     9 0,0
4,0 14   2 E +1   140 8 8,0 8,0 14 140 3♠ S =     8 4,0
0,0 13   3 S -3   300 2 12,0 0,0 13   2 W +2   170 2 12,0
4,0 3   2 W +1   140 11 8,0 3,0 3   5♠ S -2   100 11 9,0
9,0 7 100 3 E -1     4 3,0 10,0 7 420 4♠ S =     4 2,0
9,0 6 100 4 E -1     10 3,0 3,0 6   4♠ S -2   100 10 9,0
4,0 12   2 W +1   140 5 8,0 6,0 12   4♠ S -1   50 5 6,0
B O A R D   N R .   1 5 B O A R D   N R .   1 6
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
11,0 1 650 4♠ N +1     13 1,0 5,0 1   3Nt E +1   630 13 7,0
7,0 6 620 4♠ N =     2 5,0 5,0 6   3Nt E +1   630 2 7,0
1,0 4   6♠ S -1   100 11 11,0 5,0 4   3Nt E +1   630 11 7,0
1,0 9   5♠ N -1   100 12 11,0 12,0 9 200 4♠ E -2     12 0,0
4,0 5 230 2♠ N +4     14 8,0 5,0 5   3Nt E +1   630 14 7,0
7,0 10 620 4♠ N =     8 5,0 5,0 10   3Nt E +1   630 8 7,0
11,0 7 650 4♠ N +1     3 1,0 5,0 7   3Nt E +1   630 3 7,0
B O A R D   N R .   1 7 B O A R D   N R .   1 8
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
2,0 1 140 3♠ S =     4 10,0 6,0 1 660 3Nt N +2     4 6,0
6,0 10 170 3♠ S +1     11 6,0 6,0 10 660 3Nt S +2     11 6,0
6,0 14 170 3♠ S +1     12 6,0 11,0 14 1440 6Nt N =     12 1,0
11,0 13 590 4♠x S =     7 1,0 0,0 13   6Ntx N -1   200 7 12,0
0,0 3   3♣ W =   110 6 12,0 2,0 3 630 3Nt N +1     6 10,0
11,0 8 590 4♠x S =     2 1,0 6,0 8 660 3Nt N +2     2 6,0
6,0 5 170 3♠ S +1     9 6,0 11,0 5 1440 6Nt N =     9 1,0
B O A R D   N R .   1 9 B O A R D   N R .   2 0
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
4,0 1 140 3♠ S =     14 8,0 5,0 1   2 W +2   130 14 7,0
2,0 8 90 1Nt S =     12 10,0 5,0 8   3 W +1   130 12 7,0
10,0 6 420 4♠ S =     7 2,0 10,0 6   1Nt W =   90 7 2,0
0,0 4   4♠ S -1   50 5 12,0 0,0 4   1Nt W +2   150 5 12,0
10,0 9 420 4♠ S =     10 2,0 12,0 9 80 1♠ N =     10 0,0
6,0 2 170 2♠ S +2     11 6,0 8,0 2   1Nt W +1   120 11 4,0
10,0 3 420 4♠ S =     13 2,0 2,0 3   2 E +1   140 13 10,0
B O A R D   N R .   2 1 B O A R D   N R .   2 2
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
2,0 1   4♠ E +1   450 6 10,0 6,0 1   1Nt W +1   120 6 6,0
8,0 2   4♠ E =   420 7 4,0 11,0 2 100 4♠ W -1     7 1,0
8,0 10   4♠ E =   420 5 4,0 3,0 10   3♠ W =   140 5 9,0
8,0 14   4♠ E =   420 3 4,0 11,0 14 100 4♠ W -1     3 1,0
8,0 13   4♠ E =   420 8 4,0 0,0 13   4♠ W =   620 8 12,0
8,0 11   4♠ E =   420 12 4,0 3,0 11   2♠ W +1   140 12 9,0
0,0 9   5♣x N -4   1100 4 12,0 8,0 9   2♠ W =   110 4 4,0
B O A R D   N R .   2 3 B O A R D   N R .   2 4
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
6,0 1 150 3 S +2     10 6,0 3,0 1   4 W =   420 10 9,0
10,0 11 170 2♠ N +2     5 2,0 12,0 11 100 4 W -2     5 0,0
6,0 8 150 3 S +2     3 6,0 3,0 8   4 W =   420 3 9,0
2,0 6   3Nt N -1   100 9 10,0 9,0 6 50 4 W -1     9 3,0
12,0 4 200 2♠ N +3     2 0,0 3,0 4   4 W =   420 2 9,0
6,0 12 150 3 S +2     7 6,0 9,0 12 50 4 W -1     7 3,0
0,0 13   2Nt W =   120 14 12,0 3,0 13   4 W =   420 14 9,0
B O A R D   N R .   2 5 B O A R D   N R .   2 6
P-NS NS R-NS CNT P TR L R-EW EW P-EW P-NS NS R-NS CNT P TR L R-EW EW P-EW
3,0 1 100 2 W -1     8 9,0 3,0 1 100 2 E -1     8 9,0
9,0 12 150 2Nt N +1     3 3,0 9,0 12 110 2♠ N =     3 3,0
3,0 2 100 2♣ E -1     9 9,0 12,0 2 300 2Nt E -3     9 0,0
9,0 10 150 2Nt S +1     13 3,0 3,0 10 100 2 W -1     13 9,0
12,0 14 300 3 W -3     11 0,0 9,0 14 110 2♠ N =     11 3,0
6,0 7 120 2Nt S =     5 6,0 3,0 7 100 2 E -1     5 9,0
0,0 4 90 2 S =     6 12,0 3,0 4 100 1Nt E -1     6 9,0